Averages of Ratios of Christoffel Functions for Compactly Supported Measures

نویسنده

  • D. S. LUBINSKY
چکیده

Let be a compactly supported positive measure on the real line, with associated Christo¤el functions n (d ; ). Let g be a measurable function that is bounded above and below by positive constants on supp[ ] . We show that if g is continuous on some compact set J , then for a.e. x 2 J , we have

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collocation Method using Compactly Supported Radial Basis Function for Solving Volterra's Population Model

‎In this paper‎, ‎indirect collocation approach based on compactly supported radial basis function (CSRBF) is applied for solving Volterra's population model. The method reduces the solution of this problem to the solution of a system of algebraic equations‎. ‎Volterra's model is a non-linear integro-differential equation where the integral term represents the effect of toxin‎. ‎To solve the pr...

متن کامل

On Christoffel Functions and Related Quantities for Compactly Supported Measures

Let be a compactly supported positive measure on the real line, with associated orthogonal polynomials fpng. Without any global restrictions such as regularity, we discuss convergence in measure for (i) ratio asymptotics for Christo¤el functions; (ii) the Nevai operators (aka the Nevai condition); (iii) universality limits in the bulk. We also establish convergence a.e. for su¢ cently sparse su...

متن کامل

A Variational Principle for Correlation Functions for Unitary Ensembles, with Applications

In the theory of random matrices for unitary ensembles associated with Hermitian matrices,m−point correlation functions play an important role. We show that they possess a useful variational principle. Let μ be a measure with support in the real line, and Kn be the nth reproducing kernel for the associated orthonormal polynomials. We prove that for m ≥ 1, det [Kn (μ, xi, xj)]1≤1,j≤m = m! sup P ...

متن کامل

Bernstein–Szegő polynomials on the triangle

In this work we consider the extension of the one variable Bernstein–Szegő theory for orthogonal polynomials on the real line (see [3]) to bivariate measures supported on the triangle. A similar problem for measures supported in the square was studied in [1]. Following essentially [2] the orthogonal polynomials and the corresponding kernel functions are constructed. Finally, some asymptotic res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011